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A new analytical technique based on integral transformations with M i t t a g  
Leltler-type kernels is used to derive the finite-size scaling function for the free 
energy per particle of the mean spherical model with inverse power law 
asymptotics of the interaction potential. The asymptotic formation of the 
singularities in the specific heat and magnetic susceptibility at the bulk critical 
point is studied. 
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1. I N T R O D U C T I O N  

Recently, Singh and Pathria (1) and Shapiro and Rudnick (2) have developed 
systematic approaches to the derivation of critical finite-size scaling proper- 
ties of the fully finite spherical model with nearest neighbor interactions. 
They have tested the Fisher-Privman hypothesis that near a conventional 
critical point t = 0, h = 0, where t = ( T -  Tc) /Tc  and h are the reduced tem- 
perature and field variables, with algebraic divergence of the zero-field 
correlation length, the singular part of the free energy density, f~ng(t, h), of 
a finite d-dimensional hypercubic lattice system of N =  No a sites, may be 
expressed in the form 

fsingtt h~ "~ Noay(q tN~ Iv, c2hNAo/~) N ~, ~ ! (1.1) 
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valid for d less than the upper critical dimension d>. Here v and A = fi + 
are the usual critical indices, c~ and c2 are system-dependent scale factors, 
and Y(x~, x2) is a universal function of the scaled variables 

_ l/v c2hNg/~ (1.2) x l - C l t N o  , x 2 =  

An extensive study of finite-size scaling near the first-order phase 
transition boundary of the spherical model with long-range interaction, 
decaying at large distances r as r - a - ~  with o-> 0, has been carried out by 
Fisher and Privman. (3~ The thermodynamic properties of this model were 
studied by Joyce, (4) who found the critical indices to be a-dependent for 
d< < d <  d>, where d< = a (d> = 2a) is the lower (upper) critical dimen- 
sion. The asymptotic finite-size corrections to the equation of state at tem- 
peratures T <  Tc have been obtained in ref. 3 by using a method of direct 
evaluation of the discretization error at the approximation of a certain type 
of d-fold sums by the corresponding d-dimensional integrals. 

A new systematic approach to the finite-size corrections in the equa- 
tion of state of the mean spherical model with inverse power law interac- 
tion of the type r -d-~ ,  0-> 0, has been developed in ref. 5. It exploits a 
Laplace transformation technique, which allows one to reduce the problem 
of the asymptotic evaluation of d-dimensional sums to the corresponding 
one-dimensional problem. 

In the present work a still more general analytic technique is 
suggested, which allows one to handle the finite-size corrections to the free 
energy density as well. The explicit evaluation of the scaling function 
Y(xa, x2) may be necessary, e.g., for the determination of the scale factors 
c a and c2 .(~) 

The main idea consists in the use of the identities (see Appendix A) 

ln(1 + z  ~) = f o  dx(1 - e  -zx)  x - l G ~ ( x )  (1.3) 

and 

(1 + z ~ ) - ~ =  d x e  ZXF~(x) (1.4) 

with c~ > 0 and 

G~(x) = ~E~( - x  ~) (1.5a) 

F ~ ( x ) =  x ~ -  lE~,~(-  x ~) (1.5b) 
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where E~(z)=E~.l(Z), and E~.a(z) is an entire function of Mittag-Leffler 
type, (6) defined by the power series 

-- ~ zk 
E~'~(z)- k= o F(ak+f l )  (~>0)  (1.6) 

These identities with cr = 0-/2 and 

z = y -  2(n~+ ... + n ~ ) - y  -2 [nl 2 (1.7) 

where 

y--(p~l~)i /"(No/2X),  0<0-~<2 (1.8) 

allow one to easily calculate d-dimensional Fourier transforms of the 
summands in expressions like 

U(N~)(~b) = ln (p j  1~) _~_ N o  d ~, ln[- l+(y ~lnl) ~] (1.9) 
nG~N,d 

and 

w(N)( '~=(~- INo d ~ [ l + ( I n ]  y--1)~]  1 (1.10) d,a ' r !  
n~N,d 

where the summation is carried over the set (No odd integer) 

~ N d= N ~ ----12 ..... O'"" N ~ -------~l (1.i1) 

The further asymptotic analysis of sums (1.9) and (1.10), which enter into 
the expressions for the free energy density and the equation for the spheri- 
cal field [~b is a linear function of the latter, see Eq. (2.9) below], respec- 
tively, may be accomplished with the aid of the Poisson summation 
formula (t) and the Ewald summation technique (2) in complete analogy with 
the case of nearest neighbor interactions, which formally corresponds to 
0-=2. 

In the present paper it is found convenient to expound a new method 
in close parallel to the approach of Singh and Pathria. (1) This is expected 
to facilitate the extension of other results available at 0- = 2 to the case of 
0 < ~ < 2 .  

In Section 2, the notation used in the description of the model is intro- 
duced and basic expressions for the free energy per particle and the equa- 
tion for the spherical field are given. The method of derivation of the 
asymptotic form of sums (1.9) and (1.10) when No ~ m and ~b--* 0 so that 
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~bNg remains constant is expounded in Section 3. Section 4 contains a 
derivation of a new finite-size scaling form of the equation for the spherical 
field. The main result on the finite-size scaling function for the free energy 
per particle is obtained in Section 5. Some mathematical aspects of the 
suggested technique and new'consequences of the general results obtained 
here are mentioned in the discussion in Section 6. The proofs of identities 
(1.3) and (1.4) and some necessary properties of Mittag-Leffler-type func- 
tions are given in Appendix A. Appendix B contains a brief rederivation of 
a different representation of the equation for the spherical field, obtained 
first in ref. 5. 

2. T H E  M O D E L  

We consider the ferromagnetic mean spherical model. ~7) Let a(r)~ ~1 
be the dynamical variable at site r ~ Z d, and - J ( I r -  r'l ), J (0 )=  0, be the 
pair interaction potential between the variables at sites r and r'. For any 
subset A c ~u denote by a(A) = {a(r), r E A } the configuration in A and let 
the interaction energy of a(A) at fixed boundary configuration a(Y_d\A) be 

H[a(A)la(Zd\A)]-= - ~, J([r-r'l)a(r)a(r') 
{r,r '}  = A  

- ~ ~ J(lr-r'l)a(r)a(r') (2.1) 
r ~ A  r ' e Z d \ A  

Given a hypercubic region A = {1, ..., No} d of N=Ng sites and periodic 
boundary conditions, i.e., a(r + Not )=  a(r) for any t ~ 7J, the total energy 
of a(A) in an external magnetic field H e  E1 acting only on a(r), r ~ A, may 
be written in the form 

HN[a(A)-I : - ~ JN(r-- r') a(r) a(r ' )--  H ~ a(r) (2.2) 
{r,r '} ~ A  r c A  

where 

Js(l)  = ~ Jx(ll-Notl) (2.3) 
t E Z  d 

is a periodic function of the components of ! with period No, which 
includes all the interactions with the repeated images of the system. The 
series in (2.3) is assumed absolutely convergent. 

The partition function of the Gaussian model with Hamiltonian (2.2), 
in the canonical Gibbs ensemble with temperature T=fi -1>0 and 
spherical field s, is defined as 

ZN(K'L's)= f~u exp {--flHu[a(A)]-s ~ [o-(r)] 2} IJ da(r) (2.4) 
r ~ A  r e A  
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where K=flJ(O), L = ~ H .  The exact evaluation of the multidimensional 
integral in (2.4) with Harniltonian (2.2), containing a cyclic interaction 
matrix, is readily achieved by using a Fourier transformation. The Fourier 
transform of the interaction potential, 

J (q)= ~ .TN(l) exp( - - i l 'q ) ,  q=2~zn/No, n6~N,a (2.5) 
l e A  

defined for convenience on the d-dimensional torus (1.11), is assumed to 
have the long-wavelength asymptotic form 

f f ( q ) ~ f f ( O ) [ 1 - p ~  Iql~], Iq l - ->O,  ~>0,  p~>O (2.6) 

which corresponds to the inverse power law behavior J(r) ~ r -d  ~ at large 
separations r. The asymptotic form (2.6) determines the leading finite-size 
corrections to the thermodynamic properties for dimensions d < d > .  
Following refs. 3 and 4, we fix the function J(q) for q ~ ( _ ~ , ~ ] a  and 
account for the size of the system by choosing the appropriate discrete set 
of vectors q; see (2.5). 

The thermodynamic potential per particle for the Gaussian model, 

au(K, L, S) = - ( f i N )  -1 in ZN(K, L, s) (2.7) 

is given with sufficient accuracy by its long-wavelength approximation 

1 1 p~K L 2 1 
f l a u ( K , L , s ) = ~  n 2rt 2K~b+2 U(au~)(qi) (2.8) 

where U(a.u~)(~b) is the d-fold sum defined by Eq. (1.9), and 

0 = 2 s / K -  1 (2.9) 

is a parameter related to the spherical field s. 
The free energy per particle for the mean spherical model, fN(K, L), is 

defined by the Legendre transformation 

~fN(K, L) = sup [flaN(K, L, s) - s] (2.10) 
s 

The supremum in the right-hand side of Eq. (2.10) is attained at a point 
s = SN(K, L) which obeys the equation 

fl ~- aN(K , L, s ) =  1 (2.11) 
os  
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or, explicitly, 

K l l  L 2 

where the d-fold sum W(aU2(~b) is defined by Eq. (1.10). 

(2.12) 

3. GENERAL ASYMPTOTIC  ANALYSIS 

We need asymptotic expressions for the sums (1.9) and (1.10) when 
No--* ~ ,  ~b ~ 0 ,  so that y [see Eq. (1.8)] remains finite. The technique 
suggested here is based on identities (1.3) and (1.4), the application of 
which to the summands in (1.9) and (1.10), respectively, allows one to 
factorize the d-fold summation. Thus we obtain the representations 

and 

u(U~)(~b) -- In ~ +  dx {1 - [QNo(X~-2/~)] a) 

W(dN2(q~) = p~-l~-I fO dX[QNo(X~-2/")]dF,~/2(X ) 

where ~ = ()/p~ and 

(3.1) 

(3.2) 

g(p)(2rCn'a)=exp[ - a ( 2 u n ) 2 l ' N o '  'No,] J '  n ~ [  No 2 '  2 o ] (3.4) 

Then we have the Fourier series expansion 

) \No ; a = ~ e2~ik'/u~ a) 
k = - - o o  

k~77 1 (3.5) 

(3.6) 

and 

1 (No-- I)/2 

QN~ = N--~o ~ e a(2~zn/No)2 (3.3) 
n = - - ( N o -  1)/2 

The asymptotic analysis of (3.3) when N o ~  ~ follows standard 
procedures. First we define a periodic function of n e 77 1 witfi period N o by 
setting 
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where 

1 [No/2 dpe 2=ikp/N~ 27zp" ) 
~(k; a) = ~00 ~ No/2 \ No' a 

1 S = - -  doe iko ao2 

/ i 2 1 2,2\ =(4rca)-l/2e-k2/a~ReqO~na / +~ika / )  

Thus, by inserting (3.6) into (3.3), we obtain 

Quo(a)= ~ ~(/No;a) 
l =  --cx~ 

where 

(3.7) 

(3.8) 

d(0; a) = (4~a)- 1/2 ~(~al/2) (3.9) 

and, when t r 0, 

~(IN0; a) = (4~a) 1/2 e-#N2/4a Re qb(rca 1/2 + �89 1/2) 

-~ (4ha) 1/2 e-12N~/4a (3.10) 

since for all a > 0, 

I~al/2+�89 a 1/212>~7zNoll[~, No--*~, l r  (3.11) 

and the error function q~(z) tends to unity exponentially fast as [zl ~ 0o in 
the considered sector of the complex z plane. 

By inserting the asymptotic form (3.10) into (3.8), one obtains 

QNo(a)"~(4rca) ~/2qb(~al/2)+(4~a)-l/2 ~ '  e 12N~/4a (3.12) 

where the prime in the sum denotes that the term with zero summation 
index has been omitted. 

Next, upon raising (3.12) to the power d, one makes the approxima- 
tion 

[QNo(a)]a~ (4rca) -a/2 [~(~al/Z)]a+ e-  (3.13) 
1 ~ •d 

which follows if, in all terms of the form 

[ ~ ( ~ a m ) ]  " e lll2N~/4a (3.14) 
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with 1 ~<m ~<d-1  and Ill 5 0 ,  one replaces the error function ~i0(/~a 1/2) 
by unity. This approximation is legitimate since the exponential in (3.14) 
effectively cuts off the contribution from small values of a. 

The use of the asymptotic expression (3.13) in Eqs. (3.1) and (3.2) 
completes the separation of tile leading finite-size effects from the bulk con- 
tribution: 

g  2(O) = ud, o(O) + (3.15) 
W(J.~)((~) = Wd,~(O) + 6w(aN)~((~) (3.16) 

Here the corresponding bulk terms are 

= l n ~ + f  -~ dx{1--(41rx)--d/2~d/"[qb(Trxl/Z~--t/'r)] d} G~/2(X) (3.17) 
JO X 

;o = (470 a/2ps dxx-a/2[q~(rcx~/2~ 1/~)]aFo/z(X ) (3.18) 

and the leading finite-size corrections are given by 

-~ - (4TC)-d/2 ~'d/~ Z '  f o  
I~ Z d 

~ (4~z)-a/2p;l~a/~-1 Z '  f o  
l e  Z d 

d x  x - a / 2 e  "2y21t12x-I Go/2(x) (3.19) 
X 

d x  x -d /2e -g2Y21 t12X- IFa /2 (x  ) (3.20) 

4. A S Y M P T O T I C  F O R M  OF THE E Q U A T I O N  FOR THE 
S P H E R I C A L  FIELD 

The asymptotic form of Eq.(2.12) as N 0 ~ o v ,  ~b~0, so that 
~bN~ = const, has been studied in ref. 5 by using a Laplace transformation 
technique equivalent to the use of identity (1.4). It was shown there that 
when a <  d <  2a, the solution (~=q~N(K, L) of this equation, in the finite- 
size scaling critical region defined by the finite values of the scaled variables 

xl = p~Kc.[1 - K/Kc] U a 0- 
(4..1) 

X2 = (p~Kc) - 1/2 LN(oa+ 0-)/2 
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has the asymptotic form 

~N(K,  L )  -- p ~ N  o g ( x l ,  x 2 )  ( 4 . 2 )  

where g = g(x~, x2) is the solution of the equation (see Appendix B )  

g 1 g (2n [11) [(2~ [ l l )~+g]  -~ - - .~ l - - ( x2 /g )  2 (4.3) 
! _ o  

l~ •d 

with 

Cd r 
xl = xl + ' (4.4) 

(2z) ~ F(G/2) 

Here a new representation of the equation for the spherical field (2.12) 
is derived which is a direct extension of the equation due to Singh and 
Pathria. (1) To this end we make use of the integral representation (see 
Appendix A) 

F~/2(x ) = (47c) -1 /2  x 3/2 f f  dt t~E~,~(- t ~ e -t2/4x 

and transform expression (3.20) to 

(N) 

= p~lTz--(d+l)/2 

where 

(4.5) 

At ~ = 2, by making use of the fact that 

sin X t/2 
E2,2(--x)= x1/2 , 

S Wd,,T(Z)= d~ va(1 -[-'~2)-(d+l)/2 E~,a(--~Z~ ) (4.7) 

x>~0 (4.8) 

and by integration by parts in Eq. (4.7) with account of the integral 
representation of the modified Bessel function 

;o Kv(yz) = (2z) v ~ my-VF(v + �89 dt(z 2 + t 2)-~ 1/2 cos(ty) 

(y > O, ]arg z[ < re/2) (4.9) 

No / l ~ z~ 
(4.6) 
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one verifies that expression (4.6) reduces (up to a slight difference in 
notation) to the well-known form (1) 

(202)- =-.an (roy ill ) - - ( d - - 2 ) / 2  K(a_e)/2(27t 111 y) 

\~o] ,~zJ (4.10) 

In the general case of 0 < o < 2, the equation for the spherical field 
(2.12) in the finite-size scaling critical region (4.1) now follows from (4.6) 
and the known expression for the bulk term ~3'4~ 

It reads 

K ~-1D 2~a/.-i (4.1t) 

I d o l \  
2a-,~(a 1 ) / 2 - " F ( z - @ }  ~' (2~,!1)a+"wa,~(2rc , l ly) 

k .a / I ~  •d 

- Da,,(2uy) a " =  -x~ - x2(2~y)-2" (4.12) 

In the limit y --+ 0 + one may use the approximation 

~ '  (2rc[ll) a+, wa,,(2~ I!1 Y) 
I f  Z d 

fo ~~ rcl/2y . Y - "  27ra/2 drr~--lwe~(r) ~- 2a~anF((d+ l)/2 ) (4.13) 
- (2rc)aV(d/2) 

where the integral (A.16) has been used. Hence 

6W(aN,~(~))~-- p~lNoa+"(2rty) ", y-+O + (4.14) 

and Eq. (4.12) reduces to the asymptotic form 

2 -- 2 .  ~r x2(2rcy ) + (2zry) -~ - x l  

which has the (positive) solution 

(2=Y) ~  �89 [xll-* [(1 + 4  lXll X2)1/2-~ 1] (4.15) 

when X 1 ~ - - 0 ( 3 .  

An approximation in the limit y--.  § oo is most readily obtained from 
the initial expression (3.20). By substituting there the asymptotic form [see 
(A.14)] 

F./2(x)~- ~ s i n  F x o/2-1, x-+ +oo (4.16) 
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and integrating, one obtains, for 0 < a < 2, 

3W(aU2((3) ~ p21Ma.~Noa+~2~(2~y)  -2~, y ~ +oo (4.17) 

where 

M a . o = ~ - d / 2 ~ s i n ( 2 )  F ( ; ) F ( f f - ~ ) t ~ f u [ i ] - a - ~  (4.18) 

It should be noted that this result cannot be continued smoothly to the 
case a = 2, since then F~/z(X) falls off exponentially fast, 

r l ( x ) = e  -x  (4.19) 

and, correspondingly, from (4.10) one obtains in the limit y >> 1: 

3W(d~)(O) ~ p ; 1 N o a + 2 ( 4 ~ ) - i  dy(a 3)/2 e 2~y, y--+ oo (4.20) 

In any case, 3W(aU](~b) does not contribute to the leading asymptotic form 
of the equation for the spherical field, which in the limit under considera- 
tion is 

D a,.(2~zy) a ~ ~- Xl (4.21) 

Hence 

(2gy) ~ _ D22/(a-~lx~/(a-~ X 1 --* +oo (4.22) 

5. A S Y M P T O T I C  F O R M  OF THE FREE ENERGY PER PARTICLE 

It is convenient to transform the bulk term (3.17) with the aid of the 
identity [see Appendix A, Eq. (A.18)] 

In ~ = - ; o  dx x --1 [G~/z(X~2/ .)  _ G~/z(X)] (5.1) 

to the form 

Ua,~(fb) -= Aa, ~ - Bd,,~(~ ) (5.2) 

where 

f? Aa,. = dt t 1 { 1  - -  (4~zt) -a/2 [qbOztl/2)] a} ao/a(t) (5.3) 

and 

;o Ba,~(~) = (4x) -a/2 dt l -d/2- l[cr19(Trtl/2)] d [aa /2 ( t~  2/~r) -- aa/2(I)]  (5.4) 
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By using identity (A.11), one directly verifies that 

d 
d7 ud,~(~)= w~,~(~) (5.5) 

and, therefore, from Eq. (4.11) one finds 

Ud.((b ) ~_ Ua.(O) + p.Kc~_a_ n ;~a/~ (5.6) 
' " d *Jd ,  a tF 

The finite-size term (3.19) may be transformed with the use of the 
integral representation [see (A.7)] 

G~/2(x ) = (4~x) 1/2 [ ~  G~(u) e -~2/4x du (5.7) 
~0 

to the form 

a u 5~2 ( r ) 

where 

d d "d 1 " 2  / d +  1 \  = - N  o o '2g  t -  ' /F~'"- f-)  ~'  (2To I11) dUd,.(2TC I11 y) (5.8) 
IE  ,~d 

Ud, G(Z)~- dV( I + T2)-(d+ I)/2 E,(-- *~Z c*) 

One may notice that at a = 2, 

E2( - 27222) = c o s ( g z )  

(5.9) 

and, with the aid of the integral representation of the modified Bessel 
function (4.9), expression (5.8) reduces to the form 

6u(aU)(~b)=--2g d/z[=Yl ' ~'  (r~ylll) d/2Ka/2(2~ylll) (5.11) 
" \ N o /  ,~z,l 

known (in a slightly different nota t ion)for  the mean spherical model with 
nearest neighbor interactions. ~ 

Thus, by collecting the results (2.8), (3.5), (5.6), and (5.11), one 
obtains for the thermodynamic potential per particle of the Gaussian 
model with spherical field s given by [see Eqs. (1.8) and (2.9)] 

s = ~ K  l+p~\~7o ] j ,  y fixed (5.12) 

(5.1o) 
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the following asymptotic expression: 

f l a N ( K  , L, s) 

~I-ua~(O)+~lnP~K_ L2 ( No)~  ~ 
2 ' 21r 2poK\2~yJ 2 \ N o J  

- Nod(;)Id-lDa,,,(2rcy)a + 2arda 1)/2F(~--~) 

x (2= Ill)-d ud,~(2rc Ill Y) 
[E ~d 

(5.13) 

Finally, in the finite-size scaling critical region (4.1) the free energy per 
particle of the mean spherical model, defined by Eq. (2.10), takes the form 

1 1 
flfN(K, L) ~- ~ Ua,~(O) + -~ In - -  - - 

p~K 1 a 
-~K+N o Ya~(x,,x2) (5.14) 

27c 

where the finite-size scaling function Yd,~(xl, x2) is given by 

Yd,~(Xl, X 2 ) -  

x 2 

(2rcy)~ + -- ~-~ Da, o(2rcy) a 

(4/7:) ( d - l ) / 2 / ' ( - ~ ) I O "  (2Z Ill) dudo.(27C Ill y) 
/E ~'d 

+ y" ~ '  (27z I11) -a+'~ wa, o(2rc I11 y)] (5.15) 
I~ a zd 

where y = y(xl, x2) is the solution of Eq. (4.12). This equation generalizes 
the corresponding result of Singh and Pathria (~) to the case of arbitrary 
0 < o - < 2 .  

With the use of Eq. (4.12) one can write (5.15) in an alternative form, 

1 1 x~ ~ g~/*(xl, x2) Ya,.(&, x2) =-~g(xl, x2)-~ g(xl, X2) 2d Da'* 

Z !  - -d  x (2~z l/t) u~,~(Itl gl/~(xl, x2)) (5.16) 
1~ Z d 
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Let us consider now the asymptotic forms of Yd.o(Xl, X2) as xl ~ +oo. 
In the limit y ~ 0 + (xl ~ -oo) ,  we use the approximation 

~ '  (2~ I11) ~ ud,~( 2~ 111 y) 
l e Z  d 

f? 1 2~ d/2 dr r - lua, o(r ) 
- (2~)aF(d/2) ~y 

1/2 1 
~- (4To) a/2 F ( ( d +  1)/2)lny+COnSt (5.17) 

where it has been taken into account that 

f (  d r r - l E ~ ( - r ~ r  ~) 
roy 

= - ln(2~yr)  E~( - (2~y~) ~) + const 

~- -ln(2rcy~) + const (5.18) 
Therefore, 

- N o a a  (ln ~ + const) ,  y ~ 0  + (5.19) 6 U(aN~(~b) --- 

and the leading asymptotic form of Ya,~(xl, x2) when xl --* -0% x2 finite, 
becomes independent of c~: 

- " ' "  2"  ~ 2 1  1 i 4 ,,.2~1/2 ] y . j x l , x 2 ) ~ _ _ ( l + 4 l x , l x ~ ) l / 2 + _ l  n .(1+ [xl[~-2e +1. (5.20) 
2 [xl[ 

In the limit y ~  oo (xl ~ + o o )  the term 

6u(aN)((~) ~-- --NoaMa, o(~y) ~, y --* oo (5.21) 

does not contribute to the leading asymptotic form of Ya.~(x~, x2), which 
becomes 

d -  a o"d 
- 2d a,r , xl --+ +oo (5.22) 

We note again that the asymptotic expression (5.21) cannot be 
continued smoothly to the case a = 2, when it becomes exponentially small: 

aV(a~)((k) ~_ _ N o  a dy(a- 1)/2 e 2=u (5.23) 

However, the asymptotic form (5.22) reduces at a = 2 to the known 
expression.(1 
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6. D I S C U S S I O N  

In the present paper we have found the a-dependent scaling function 
Ya,,(xl ,  x2) for the free energy per particle of the mean spherical model 
with an interaction potential falling with distance r as r - a - ~  when r-+ oo. 
A convenient representation (5.16) of Ya,~(xl, x2) has been obtained, which 
involves integral transforms [-see Eq. (5.9)] of the simple function square- 
integrable over (0, oo) 

v~(~)= (1 +~2) -(~+')/2, ~e(0, ~)  

with the Mittag-Leffler kernel E ~ ( -  ~'z~). Such transforms are a particular 
case: of more general transformations with Mittag-Leffler-type kernels, 

z ~ 1E~.e(e~x=) ,  x > 0, � 89  ~< (p ~< 2 ~ -  �89 

in the class of functions square-integrable over (0, oo), the mathematical 
theory of which has been developed. (9) The suggested new analytical 
technique may be successfully used to generalize a number of results on the 
spherical model with different geometry and boundary conditions. ~ 

Here we point out that some new information about the contribution 
of the long-distance asymptotics of the interaction potential to the forma- 
tion of the critical bulk singularities Of the mean spherical model can be 
derived from our results. 

When t = ( T -  T~)/T~ -+ O, the singular part, c(~)(K, 0), of the zero-field 
specific heat per particle is given by 

0 2 
2 r.*2 ~ r  2 g + d  c(~)(K, 0) -~ - p j % l v  o Ox 2 Ya,,~(x~, 0) (6.1) 

The differentiation of the scaling function (5.16) with respect to x~, by 
taking into account Eq. (4.12), yields 

0 1 
Y~,~(Xl, xj  =~g(xl 

0Xl 

Therefore, 

, x j  (6.2) 

1 2 2 2 a + d  0 c(~)(K, O) ~- -- ~ p ~ K c U  o ~ g (x , ,  O) 

In the limit Xl ~ -oo  one may use Eq. (4.15) to obtain from (6.3) 

1 ~ 2  r.-"2 ;~r - -2~+d I . .  I - - 2 ,  c~)(K, O) -~ --~p~lx~lv o [-gl[ X 1 - '+ --00 

(6.3) 

(6.4) 
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Hence, the singular part of the specific heat just below the critical point 
behaves as 

c ~ ) ( K , O ) ~ _ � 8 9  2, t ~ O  (6.5) 

independently of the interaction potential parameter a. 
When Xl --+ +0% the use of Eqs. (4.22) and (6.3) yields 

O" 
c~)(K, 0)"~ N-2~+d(p~Kc) 2 D~..~/{a-~)~{2~ (6.6) 2 ( d -  a) o ~1 

i.e., just above the critical point one obtains in the leading order 

O" 

c~)(K, 0) -~ 2 ( d -  ~r~ (p~ ~ Dd'j/(a ~ a~/(a- ~), t -+ 0 + 

(6.7) 

The known value of the critical exponent ~ for the singular part of the 
specific heat follows from Eq. (6.7): 

2 a -  d 
a s -  d - a  ' cr < d <  2a (6.8) 

Thus, we see that the low-temperature branch of the singular part of 
the bulk specific heat, c~)(K, 0), is asymptotically built out of a (vanishing 
in the thermodynamic limit) function [see Eq. (6.5)] which does not 
depend on the decay parameter a of the interaction potential. 

An analogous situation is observed in the case of the magnetic suscep- 
tibility ZN(K, L). By differentiation of the magnetization per particle, 

H 
mN(K, L) = -- ~-~ fifN(K, L) = p~3(0------~ ~N' (6.9) 

with allowance for the dependence of ~N on H through the equation of 
state [see Eqs. (4.2), (4.3)], one obtains 

TZN(K, L ) -  N~ r I1 - x2 c3g(xi,x2)] (6.10) 
p~Kg(x, ,  x2) 1 g ( ~ i  x2) ~x2 1 

Therefore, for the zero-field susceptibility in the limit x 1 --). -(3(3, one finds, 
by using (4.15), the following leading-order expression 

N~ 
ZN(K, 0) ~ Ix11, xi -+ - - ~  (6.11) 

p j (0)  
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Hence 

Z N ( g , o ) ~ f l c  Itl NOd, t ~ 0 -  (6.12) 

i.e., the low-temperature branch of the bulk zero-field susceptibility per par- 
ticle is again asymptotically built out of a (diverging in the thermodynamic 
limit) function that does not depend on the decay parameter a of the inter- 
action potential. 

In the limit Xl ~ ~ from (4.22) it follows that 

Z N ( K ,  O)  "~ N ~ [ p j ( O ) ] - - 1  l ) a / ( d - a ) v - a / ( d - - a  ) (6.13) ~ d,a ~ 1 

which implies that the singularity at the critical point from above is charac- 
terized by the o--dependent critical exponent 7 = a/(d-a): 

ZN(K, O) ~ flcDad( (d ~ d/(d .) t ~/(d ~), t ~ 0  + (6.14) 

It is interesting to note that the low-temperature asymptotic expres- 
sions (6.5) and (6.12) hold even in the extreme case of the infinitely coor- 
dinated Husimi-Temperley mean spherical model with N = No d spins. 

Finally, we remark that the leading finite-size corrections to the free 
energy density and to the equation for the spherical field, when No ~ 0, 
r ~ 0 so that CN~ remains finite, were found to be of the form 

3 U ~N~)(~b) ----- Wodf~(r 

-d+~ , ~ d (6.15) 
6 w~N~)(r --~ No )q(r f ' t ( x )  = -~x f j ( x )  

provided one takes into account only the leading asymptotic form (2.6) of 
the Fourier transform of the interaction potential. Although the explicit 
expressions for the functions f l ,  f ' l ,  which follow from Eqs. (5.8) and (4.6), 
respectively, are valid for any d >  0, a > 0, finite values of CN; satisfy the 
equation of state when r ~ 0, No ~ ~ only if a < d <  2a. The correspond- 
ing bulk contributions are given then by (5.6) and (4.11). 

The modifications of finite-size scaling for d~< a and d~> 2a will be 
considered elsewhere (see also ref. 2). 

A P P E N D I X  A 

The Mittag-Leffler-type functions are entire functions of finite order of 
growth, defined by the power series (6) 

Z k 

E~,~(z) = k~ r(~k + fl)' 
= 0  

~ > o  (A.1) 

822/56/3-4-6 
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In particular, the function E ~ ( z ) =  E~, ~(z) has been introduced by Mittag- 
Leffler. A rather complete study of these functions can be found in ref. 8 
(see also ref. 6). 

Here we are interested in the properties of functions (A.1) when 
0 < ~ < 2  and fl~>0. 

To derive the identity (1.3), one may start with the known integral ~6) 

fo 1 (A.2) dt  e ~E~(t~z)  = 1 - z 

which converges in the complex z plane to the left of the line Re Z TM = 1, 

larg zl ~< �89 By setting here z = - p  ~, p > 0, and t = xp ,  one obtains the 
Laplace transformation (9~ 

f0 ~ p~--I Re p > 0 (A.3) d x  e pXE~( - x  ~) = 1 + p~ '  

Equation (1.3) now follows by integration of (A.3) over p from zero to z. 
The identity (1.4) may be derived from a more general integral 

fo 1 (A.4) dt  e - ' t  ~ -  1E~,~(t~y) - 1 - y 

which is readily obtained by means of term-by-term integration with the 
use of series (A.1). By setting in (A.4) y =  - z  -~, z > 0 ,  and t = x z ,  one 
obtains the Laplace transformation ~176 

I o  z~-~ (A.5) d x  e - Z X x ~ -  1E~,~( - x ~) = 1 4- z ~ 

Hence fl = e yields Eq. (1.4). 
Particular cases (1.1) and (1.2) follow from general identities (1.3) and 

(1.4), respectively, considering that 

E , ( z )  = E I , I ( Z  ) = e z (A.6) 

The integral representation (5.7) is equivalent to 

E~( - t ~) = (Tzt) 1/2 du E2~( --u 2~) e u2/4, (A.7) 

which may be obtained by means of term-by-term integration of the series 
representing the integrand. 
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In order to derive the integral representation (4.5), we write down 

f ~  (4nx) - 1/2 dt t"Eo,.( - t") e --t2/4x 

~0 

= (4n) 1/2 ~ ( - 1 )  k2'~(k+l)x'~(k+l)/2 
~=o r(~(k+ 1)) 

xak/2 
= x"/2 ( -  1)k F(�89 + 1)) - x"/ZE~/2'~ (A.8) 

k = 0  

The differential relation (5.5) follows from the identities 

d ~ ( - 1 ) k z  ~k 
[ z ~ E ~ " + ~ ( - z ~ ) ]  = z ~  ~ ~ o  r(~k+~) 

c ~ - - I  ct = z  E~,~(--z ) (A.9) 

and 

Z ~k 
z ~ E ~ , ~ + I ( - Z ~ ) = - ~  ( - 1 )  k 

k=l F ( x k +  1) 

= 1 - E ~ ( - z  ~) (A.10) 

Hence 

d 
d z E ~ ( - z ~ ) - z ~ - X E  - ~, ~,t-z~, (A.11) 

In the derivation of asymptotic expansions (4.16) and (5.21) we have 
used the leading asymptotic behavior of E ~ ( - x  ~) and E~,~(-x  ~) when 
x ~ Go, which follows from the following lemma. 

L e m m a  (8>. Let 0 < e < 2, fl be an arbitrary complex number, and 7 
be a real number obeying the condition 

�89 < ? < min{n, an} 

Then for any integer p ~> 1 the following asymptotic expressions hold when 
I z l - ,  oo: 

1. At targz] ~<7, 

1 ~ z k 
E~,~(z)=_z 1-1~)/~e~/~_ k=~L F ( f l _ a k )  + (9(Iz] p 1) (A.12) 
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2. At 7 ~< [argzl ~zc, 

P Z k 

E~,a(z) = --k=12 F(B_ock) + ( ; ( I z l -p - l )  (A.13) 

Notice that since F(0) = o% from (A.13) it follows that 

X--2~ 
E~,~( -x  ~) ~- f , ( _ ~ ) ,  x ~ ~ ,  ~ ~ 1 (A.14) 

By integration of Eq. (A.11) one gets 

fodZ Zl-~E - E~( - t  ~) (A.15) ~-z~)= 1 

Passing here to the limit t --+ ~ ,  taking account of (A.13), one finds 

? dz z I ~E~,~(- z ~) = 1 (A.16) 

As a direct consequence of (A.16), one obtains for any t >  0 

? dxx  ~ ~E~,~(-x~t)=t ~ (A.17) 

The integration of Eq. (A.17) over t from ~b > 0 to one yields the identity 

oo 1 -ln~=fo dxx  x f~ dtx~E~.~(_x~t) 

;o =~ d x x  l [ E ~ ( - x ~ ) - E ~ ( - x ~ ) ]  (1.18) 

where use has been made of the relationship 

d X~ ( - 1 ) ~ t  k lx~k 
~ g~(--x=t) = ~ F(c~k) = -x=E~,=(-x~t) (A.19) 

k = l  

A P P E N D I X  B 

For the sake of completeness, a short 
(4.3), obtained first in ref. 5, is given here. 

derivation of Eqs. (4.2) and 
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One starts by noticing that with the aid of the d-dimensional version 
of the Jacobi identity (see, e.g., ref. 1) 

S e-all(2"= S e-z2lll2a-t (B.1) 
le Z d le Z d 

the finite-size term (3.20) may be cast in the form 

= ~ : l ~ - l N o d  {1 + ~  dxLlS:d 
2 /'g" 2\ d/21 ; 

e :<'1Y-2--~2~ -) ]Fr 
(B.2) 

The integral in the right-hand side of Eq. (B.2) may be identically written 
as a sum of two terms, Ii(y)+ I2(y), where 

f T~y2\d/2l[- X~/2 1 ] 

/'(Y)=;o dx[,~;de-~l'l=Y-2--~-) It F~ F(a/2)J 
(B,3) I ~ [ (_~) a/2] 

I2(y) = F(rr/2) dx x ~ 1 ~'  e-xlll2y-2-- 
Lie Z d 

Now, by making use of the identity (1.4), we see that 

,~: , ; :  dxe X'I'2Y 2[ Fff/2(x) F(G/2)J XG/2 ] l  

= y~ YJ I l l -"  [(Itl y 1)o+ 1]-' (B.4)  
le •d 

and, taking into account the small-argument asymptotic behavior of 
F,~/2(x), we may set 

co [ r(o-/2)jx~/2 i ] =  ~d/2Ydfo dxx -a/2 F,/2(x) --(2~zy)aDa,~ (B.5) 

whereby the constant Da, ~ is defined. 
Next, I2(y) may be written as 

h ( y )  = - -  1 ] iLno{~ ,  f : d x x O / 2  le_xltl2y_2 
F(o'/2) t ~ zd 

_ gd/2yd dx  x - (a - ,~)/2 - 1 Ca ~ 
= r(o- /2)  ' 

(B.6) 
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where Cd, o is a Madelung-type constant (s) 

Cd~=~im ~ {t~dF(~,6 ]!] 2 ) ]l]-~ r F ( ~ , 6  ]r] ]rJ 

Collecting the results (B.2)-(B.7), we get (5) 

(B.7) 

W~N,)((j) Wd,~(f~)+p~N~ ~{(~N~)_ 1 Ca~ 
_~ + (2=)7-~F(a/2) 

+ Da, o(~N~)a/o-I-~N~ ~' (2~ I!1) -~ 
lc Z d 

x I-(2~ I11)~ + ~N~] -~} (B.8) 

Now, Eqs. (4.2) and (4.3) follow by the substitution of (B.8) and (4.1) into 
(2.12) and by taking into account Eq. (4.11). The finite-size temperature 
shift is identified as (5) 

~'N: -(P~Kc) -1 No  d+~ Cd,~ 
(2X) ~ F(O/2) (B.9) 
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